

MICROBIOLOGY 1 Dr. Saja Ebdah

2025 Study smarter, not harder!

Scope and History of Microbiology

• Terms

- Microbiology is the study of *microbes* (microorganisms)
 - \checkmark They are so small (in the scale of microns) that they require a microscope for study.
- Microorganisms are present almost *everywhere* in air, water (oceans, springs, drinking water), soil, animal & human body (GIT, respiratory tract, and skin), and even in the deep hot interior of Earth (temperatures reaching 110°C), as well as in the Antarctic.

• Why Study Microbiology? – Importance of Microorganisms

- > Disease mediators: Microorganisms play a crucial role in *disease* transmission.
- Production of antibiotics and vaccines: Many antibiotics and vaccines are *derived* from microorganisms.
- Genetic engineering: Microorganisms are used for producing *interferon*, growth hormone, insulin, etc.
- **Food industry:** Microbes are used in *food production*, like pickles, yogurt, etc.
- > Fermentation: Microorganisms help in making *dough* and *alcohol*.
- Nitrogen fixation for plants: Certain microbes contribute to nitrogen fixation, which is *essential* for plant growth.
- Food Chain: Microorganisms can be the first element in the food chain by *capturing* energy and *storing* it in molecules that other organisms use as food.
- Digestive system: Some microorganisms live in the digestive system of grazing animals and assist in digestion.
- > Decomposition: Certain microorganisms *decompose dead* organisms and waste material.
- **Research**: Microorganisms are *studied* in ecology, biochemistry, genetics, and other fields.

• Scope of Microbiology – Types of Microorganisms

- 1. Bacteria
 - ✓ Prokaryotic cells
 - ✓ Majority are *single*-celled, with spherical, rod, or spiral shapes; a few are filamentous.
 - Most bacteria *absorb* nutrients from their environment, though some can *synthesize* their own through processes like photosynthesis.
 - ✓ *Widely* distributed in the environment, including decaying matter.
 - ✓ Some cause diseases (*pathogenic* bacteria).
- 2. Algae
 - ✓ Some algae are single-celled microscopic organisms, while others are large and complex, *multicellular organisms*.
 - ✓ Algae *capture* energy from light and serve as a food source for other organisms.
- 3. Fungi
 - ✓ *Yeasts* are unicellular, while *molds* may be unicellular or multicellular (e.g., mushrooms).
 - ✓ Fungi *absorb* ready-made nutrients.
 - ✓ *Found* in water, soil, and decomposing organic matter.
 - ✓ Some fungi cause *diseases*; others *produce* antibiotics.

4. Viruses

- ✓ *Acellular* entities composed of nucleic acids (DNA or RNA) and proteins.
- ✓ *Very small* size; not seen by light microscope.
- ✓ When viruses are extracellular they are non-viable, but *once* they *enter* a living cell they start to *replicate*.
- ✓ Many viruses invade human cells and cause *diseases*.
- 5. Viroids
 - ✓ Very small, acellular infectious agents
 - ✓ Composed solely of nucleic acids *without protein* coatings.
 - ✓ Cause *plant diseases*.
- 6. Prions
 - ✓ Proteins *without nucleic acids*.
 - Cause diseases such as mad cow disease (Bovine Spongiform Encephalopathy BSE) and Creutzfeldt-Jakob Disease (CJD) in humans.
- 7. Protozoa
 - ✓ *Single-celled* microscopic organisms, although some amoebas can be seen with the naked eye.
 - ✓ *Possess* at least one nucleus and numerous intracellular structures.
 - ✓ Protozoa *obtain* food by engulfing or ingesting other microorganisms.
 - ✓ *Found* in soil, water, and animals.

8. Helminths (Worms)

- ✓ *Larger organisms* but with microscopic stages in their life cycle.
- 9. Arthropods (Insects)
 - ✓ Studied in microbiology because they can transmit microorganisms and cause diseases (*biological vectors*).
 - ✓ *For example*, the Tsetse fly transmits Trypanosoma, causing sleeping sickness.

• Scope of Microbiology – Fields of Microbiology

- Field (Pronunciation)
 - ✓ Microbial taxonomy: *Classification* of microorganisms
- Health-Related Fields
 - ✓ Immunology: How host organisms *defend* themselves against microbial infection
 - ✓ Epidemiology: *Frequency* and *distribution* of diseases
 - ✓ Etiology: *Causes* of disease
 - ✓ Infection control:_How to *control* the spread of nosocomial (nos-o-ko'me-al), or hospitalacquired, infections
 - ✓ Chemotherapy: The development and use of chemical substances to *treat diseases*
- Fields According to Applications of Knowledge
 - Food and beverage technology: How to *protect* humans from disease organisms in fresh and preserved foods
 - ✓ Environmental microbiology: How to *maintain* safe drinking water, dispose of wastes, and control environmental pollution

- Industrial microbiology: How to *apply knowledge* of microorganisms to the manufacture of fermented foods and other products of microorganisms
- Pharmaceutical microbiology: How to *manufacture* antibiotics, vaccines, and other health products
- ✓ Genetic engineering: How to *use microorganisms* to synthesize products useful to humans
- > Field according to organism studied:
 - ✓ Bacteriology: bacteria
 - ✓ Phycology: algae
 - ✓ Mycology: fungi
 - Protozoology: protozoa
 - ✓ Parasitology: parasite
 - ✓ Virology: viruses
- > Fields according to processes or functions studied
 - ✓ Microbial metabolism: *chemical reactions* that occur in microbes
 - ✓ Microbial genetics: transmission and action of *genetic information* in microorganism
 - ✓ Microbial ecology: *relationships* of microbes with each other and with the environment

• History of Microbiology

- 1. Robert Hooke (1664)
 - ✓ Built a compound microscope and used it to observe thin slices of cork.
 - ✓ Coined the term "cell" to describe the small, orderly arrangement of boxes he saw, which

reminded him of the cells (small, bare rooms) of monks

2. Anton van Leeuwenhoek (1684)

- ✓ First to make and use lenses to observe living microorganisms.
- ✓ His lenses were of excellent quality and magnified up to 300X.
- ✓ Discovered "animalcules" in various samples.
- 3. Schleiden and Schwann
 - ✓ Formulated the cell theory, which states that cells are the fundamental units of life and carry out all basic life functions.
- 4. The Germ Theory of Disease
 - A. The Hypothesis of Spontaneous Generation
 - ✓ It sets that the *combination* of water , fire , air and soil can create or convert a non-living thing to a living organism

- E.g. rodents arose from mist grains, beetles from dust, worms & frogs from mud, maggots from rotting meat.
- B. Francesco Redi
- *Conducted* an experiment with meat and open/closed jars, showing that maggots only appeared on uncovered meat (when flies laid eggs).

C. Lazzaro Spallanzani

 Boiled broth, sealed it, and showed no microbial growth, challenging spontaneous generation, though critics argued that the *absence of oxygen inhibited growth*.

5. Louis Pasteur (1822)

- ✓ Ended the *spontaneous generation* debate with the famous swan-neck flask experiment, which showed that microbes in the air could not reach the broth.
 - This experiment allowed air to contact the broth
 - Microbes present in the dust were not able to navigate the tortuous bends in the neck of the flask

- ✓ Developed *pasteurization*, a method of heating liquids to kill unwanted organisms (heating wine to 56 °C in the absence of oxygen for 30 min).
- ✓ Contributed to the *wine and silk industries*
- ✓ Developed a *rabies vaccine*.
 - Made of dried spinal cord from rabbits infected with rabies Administered to a 9-year-old boy who had been severely bitten by a rabid, then the *boy survived*

6. Robert Koch

- ✓ Developed methods for growing bacteria in *pure cultures*.
 - First he used gelatin but it melts as some microbes liquefy it, then he took the suggestion of Angelina Hesse to add agar to his bacteriological media
- ✓ Identified bacteria causing diseases like *anthrax* and *tuberculosis* in both dividing and dormant (spore) form
- ✓ He developed *tuberculin* as a vaccine for tuberculosis
 - Although tuberculin *failed* as a vaccine, it is still used in a skin test to diagnose tuberculosis
- ✓ Created Koch's Postulates, which are used to link specific microbes to specific diseases.

Koch's Postulates:

- 1) The *causative* microbe should be present in all affected organisms, but not in healthy ones.
- 2) The microbe must be *isolated* and *grown* in pure culture.
- 3) The *cultured microbe* should cause the same disease when inoculated into a healthy organism.
- 4) The microbe should be *re-isolated* and shown to be the *same* as the original pathogen.

7. The Germ Theory of Disease

✓ Stated that *microorganisms* (germs) could invade other organisms and cause disease, a concept that laid the foundation for *modern microbiology*.

8. Virology

- Emerged after bacteriology due to size of viruses
- Scientists used *porcelain filter* to remove bacteria from water but the filtrate remained infectious due to very small pathogenic agents which were then recognized to be viruses.

9. Ignaz Semmelweis

- He found a connection between staff hygiene (cleanliness) and the incidence of puerperal (childbed) fever
- He proposed the practice of hand washing with *chlorinated lime* (calcium hypochlorite) solutions to reduce the postpartum mortality rate .But some doctors were offended by his suggestions.
- 10. Joseph Lister
 - Introduced the use of carbolic acid (phenol) to sterilize instruments and reduce postoperative infections, considered the father of aseptic surgery.

11. Ancient Chinese

- ✓ Noticed that individuals scarred by smallpox were immune to further infection and used *variolation* (sniffing powdered scabs or introducing infected fluid) to provide immunity.
- Variolation was later practiced in Europe but by soaking a thread in the fluid of a smallpox vesicle (blister) and then introducing it through a small incision in the arm

• Immunology and Chemotherapy

- 1. Edward Jenner
 - Observed that milkmaids who had cowpox didn't get smallpox and inoculated a child with cowpox, proving immunity to smallpox. This led to the development of the vaccine.

2. Elie Metchnikoff

- Discovered *phagocytes*, cells in the body that ingest microbes, challenging the belief that immunity was due to non-cellular substances in the blood.
- ✓ He developed several vaccines, some were successful while others failed

3. Paul Ehrlich

- Discovered that certain dyes stained microorganisms but not animal cells, leading to the concept of *selective toxicity*.
- ✓ This led him to search for the 'magic bullet', a chemical that would *destroy specific* bacteria without damaging surrounding tissues
- ✓ Developed *Salvarsan* to treat syphilis and coined the term *chemotherapy*.

4. Alexander Fleming

- Discovered *penicillin*, a groundbreaking antibiotic, after observing that Penicillium mold prevented bacterial growth.
- While the work on penicillin was going on, *sulfa drugs* were also being developed from sulfonamide-containing dyes (i.e. prontosil)
- ✓ Many antibiotics were then produced *from soil bacteria* e.g. streptomycin, chloramphenicol and chlorotetracycline

• Modern History of Microbiology – Examples

1. Genetic Engineering

Microorganisms have been genetically engineered to *produce* drugs, hormones, vaccines, and other biologically important compounds.

2. Bacteriophage Therapy

- Bacteriophages, *viruses* that attack and *kill* specific bacteria, were developed as a treatment in the 1920s.
- ✓ Today, there is a trend to *re-examine* such an approach especially with the progressive emergence of antibiotic resistance.

Arkanacademy

www.arkan-academy.com

+962 790408805

 \bigcirc